Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.961
Filtrar
1.
Protein Sci ; 33(6): e5012, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723180

RESUMEN

The enormous LysR-type transcriptional regulators (LTTRs), which are diversely distributed amongst prokaryotes, play crucial roles in transcription regulation of genes involved in basic metabolic pathways, virulence and stress resistance. However, the precise transcription activation mechanism of these genes by LTTRs remains to be explored. Here, we determine the cryo-EM structure of a LTTR-dependent transcription activation complex comprising of Escherichia coli RNA polymerase (RNAP), an essential LTTR protein GcvA and its cognate promoter DNA. Structural analysis shows two N-terminal DNA binding domains of GcvA (GcvA_DBD) dimerize and engage the GcvA activation binding sites, presenting the -35 element for specific recognition with the conserved σ70R4. In particular, the versatile C-terminal domain of α subunit of RNAP directly interconnects with GcvA_DBD, σ70R4 and promoter DNA, providing more interfaces for stabilizing the complex. Moreover, molecular docking supports glycine as one potential inducer of GcvA, and single molecule photobleaching experiments kinetically visualize the occurrence of tetrameric GcvA-engaged transcription activation complex as suggested for the other LTTR homologs. Thus, a general model for tetrameric LTTR-dependent transcription activation is proposed. These findings will provide new structural and functional insights into transcription activation of the essential LTTRs.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Escherichia coli , Activación Transcripcional , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regiones Promotoras Genéticas , Microscopía por Crioelectrón , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Regulación Bacteriana de la Expresión Génica , Multimerización de Proteína , Sitios de Unión
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731921

RESUMEN

The conserved cyanobacterial protein PipX is part of a complex interaction network with regulators involved in essential processes that include metabolic homeostasis and ribosome assembly. Because PipX interactions depend on the relative levels of their different partners and of the effector molecules binding to them, in vivo studies are required to understand the physiological significance and contribution of environmental factors to the regulation of PipX complexes. Here, we have used the NanoBiT complementation system to analyse the regulation of complex formation in Synechococcus elongatus PCC 7942 between PipX and each of its two best-characterized partners, PII and NtcA. Our results confirm previous in vitro analyses on the regulation of PipX-PII and PipX-NtcA complexes by 2-oxoglutarate and on the regulation of PipX-PII by the ATP/ADP ratio, showing the disruption of PipX-NtcA complexes due to increased levels of ADP-bound PII in Synechococcus elongatus. The demonstration of a positive role of PII on PipX-NtcA complexes during their initial response to nitrogen starvation or the impact of a PipX point mutation on the activity of PipX-PII and PipX-NtcA reporters are further indications of the sensitivity of the system. This study reveals additional regulatory complexities in the PipX interaction network, opening a path for future research on cyanobacteria.


Asunto(s)
Proteínas Bacterianas , Synechococcus , Synechococcus/metabolismo , Synechococcus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Unión Proteica , Adenosina Trifosfato/metabolismo , Mapas de Interacción de Proteínas , Proteínas de Unión al ADN , Factores de Transcripción
3.
Gut Microbes ; 16(1): 2350778, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38717446

RESUMEN

Ethanolamine is an abundant compound in the gastrointestinal tract and a valuable source of carbon and nitrogen for pathogenic bacteria harboring ethanolamine utilization (eut) genes. Eut-positive pathogens can consume free ethanolamine to outcompete commensal microbes, which often lack eut genes, and establish infection. Ethanolamine can also act as a host recognition signal for eut-positive pathogens to upregulate virulence genes during colonization. Therefore, reducing free ethanolamine titers may represent a novel approach to preventing infection by eut-positive pathogens. Interestingly, the commensal microorganism Levilactobacillus brevis ATCC 14869 was found to encode over 18 eut genes within its genome. This led us to hypothesize that L. brevis can compete with eut-positive pathogens by clearing free ethanolamine from the environment. Our results demonstrate that despite being unable to metabolize ethanolamine under most conditions, L. brevis ATCC 14869 responds to the compound by increasing the expression of genes encoding proteins involved in microcompartment formation and adhesion to the intestinal epithelial barrier. The improved intestinal adhesion of L. brevis in the presence of ethanolamine also enhanced the exclusion of eut-positive pathogens from adhering to intestinal epithelial cells. These findings support further studies to test whether L. brevis ATCC 14869 can counter enteric pathogens and prevent or reduce the severity of infections. Overall, the metabolic capabilities of L. brevis ATCC 14869 offer a unique opportunity to add to the armamentarium of antimicrobial therapies as well as our understanding of the mechanisms used by beneficial microbes to sense and adapt to host microenvironments.


Asunto(s)
Adhesión Bacteriana , Etanolamina , Regulación Bacteriana de la Expresión Génica , Levilactobacillus brevis , Etanolamina/metabolismo , Adhesión Bacteriana/efectos de los fármacos , Levilactobacillus brevis/genética , Levilactobacillus brevis/metabolismo , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microbioma Gastrointestinal , Animales , Virulencia/genética
4.
Arch Microbiol ; 206(6): 260, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744718

RESUMEN

Campylobacter jejuni is known to enter a viable but non-culturable (VBNC) state when exposed to environmental stresses. Microarray and quantitative real-time polymerase chain reaction (qPCR) analyses were performed to elucidate the genes related to the induction of the VBNC state. The C. jejuni NCTC11168 strain was cultured under low-temperature or high-osmotic stress conditions to induce the VBNC state. mRNA expression in the VBNC state was investigated using microarray analysis, and the gene encoding peptidoglycan-associated lipoprotein, Pal, was selected as the internal control gene using qPCR analysis and software. The three genes showing particularly large increases in mRNA expression, cj1500, cj1254, and cj1040, were involved in respiration, DNA repair, and transporters, respectively. However, formate dehydrogenase encoded by cj1500 showed decreased activity in the VBNC state. Taken together, C. jejuni actively changed its mRNA expression during induction of the VBNC state, and protein activities did not always match the mRNA expression levels.


Asunto(s)
Proteínas Bacterianas , Campylobacter jejuni , Regulación Bacteriana de la Expresión Génica , Campylobacter jejuni/genética , Campylobacter jejuni/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Viabilidad Microbiana , Presión Osmótica , Estrés Fisiológico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Perfilación de la Expresión Génica
5.
Nat Commun ; 15(1): 4087, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744842

RESUMEN

Adaptive laboratory evolution experiments provide a controlled context in which the dynamics of selection and adaptation can be followed in real-time at the single-nucleotide level. And yet this precision introduces hundreds of degrees-of-freedom as genetic changes accrue in parallel lineages over generations. On short timescales, physiological constraints have been leveraged to provide a coarse-grained view of bacterial gene expression characterized by a small set of phenomenological parameters. Here, we ask whether this same framework, operating at a level between genotype and fitness, informs physiological changes that occur on evolutionary timescales. Using a strain adapted to growth in glucose minimal medium, we find that the proteome is substantially remodeled over 40 000 generations. The most striking change is an apparent increase in enzyme efficiency, particularly in the enzymes of lower-glycolysis. We propose that deletion of metabolic flux-sensing regulation early in the adaptation results in increased enzyme saturation and can account for the observed proteome remodeling.


Asunto(s)
Escherichia coli , Proteoma , Proteoma/metabolismo , Proteoma/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Evolución Molecular Dirigida , Glucosa/metabolismo , Adaptación Fisiológica/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glucólisis/genética
6.
Curr Microbiol ; 81(6): 166, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724665

RESUMEN

Many regulatory genes that affect cellular development in Streptomyces, such as the canonical bld genes, have already been identified. However, in this study, we identified sven_5003 in Streptomyces venezuelae as a major new developmental regulatory gene, the deletion of which leads to a bald phenotype, typical of bld mutants, under multiple growth conditions. Our data indicated that disruption of sven_5003 also has a differential impact on the production of the two antibiotics jadomycin and chloramphenicol. Enhanced production of jadomycin but reduced production of chloramphenicol were detected in our sven_5003 mutant strain (S. venezuelae D5003). RNA-Seq analysis indicated that SVEN_5003 impacts expression of hundreds of genes, including genes involved in development, primary and secondary metabolism, and genes of unknown function, a finding confirmed by real-time PCR analysis. Transcriptional analysis indicated that sven_5003 is an auto-regulatory gene, repressing its own expression. Despite the evidence indicating that SVEN_5003 is a regulatory factor, a putative DNA-binding domain was not predicted from its primary amino acid sequence, implying an unknown regulatory mechanism by SVEN_5003. Our findings revealed that SVEN_5003 is a pleiotropic regulator with a critical role in morphological development in S. venezuelae.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Cloranfenicol/farmacología , Isoquinolinas/metabolismo
7.
Elife ; 132024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739431

RESUMEN

Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3',5'-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.


Asunto(s)
Proteínas Bacterianas , AMP Cíclico , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis , Estrés Fisiológico , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiología , AMP Cíclico/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Viabilidad Microbiana , Macrófagos/microbiología , Macrófagos/metabolismo
8.
Microbiology (Reading) ; 170(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38717801

RESUMEN

Mycobacterium tuberculosis (Mtb) senses and adapts to host environmental cues as part of its pathogenesis. One important cue sensed by Mtb is the acidic pH of its host niche - the macrophage. Acidic pH induces widespread transcriptional and metabolic remodelling in Mtb. These adaptations to acidic pH can lead Mtb to slow its growth and promote pathogenesis and antibiotic tolerance. Mutants defective in pH-dependent adaptations exhibit reduced virulence in macrophages and animal infection models, suggesting that chemically targeting these pH-dependent pathways may have therapeutic potential. In this review, we discuss mechanisms by which Mtb regulates its growth and metabolism at acidic pH. Additionally, we consider the therapeutic potential of disrupting pH-driven adaptations in Mtb and review the growing class of compounds that exhibit pH-dependent activity or target pathways important for adaptation to acidic pH.


Asunto(s)
Adaptación Fisiológica , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/fisiología , Concentración de Iones de Hidrógeno , Animales , Humanos , Tuberculosis/microbiología , Tuberculosis/tratamiento farmacológico , Macrófagos/microbiología , Virulencia , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Antituberculosos/farmacología
9.
Biotechnol J ; 19(5): e2400023, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719589

RESUMEN

The discovery of antibiotics has noticeably promoted the development of human civilization; however, antibiotic resistance in bacteria caused by abusing and overusing greatly challenges human health and food safety. Considering the worsening situation, it is an urgent demand to develop emerging nontraditional technologies or methods to address this issue. With the expanding of synthetic biology, optogenetics exhibits a tempting prospect for precisely regulating gene expression in many fields. Consequently, it is attractive to employ optogenetics to reduce the risk of antibiotic resistance. Here, a blue light-controllable gene expression system was established in Escherichia coli based on a photosensitive DNA-binding protein (EL222). Further, this strategy was successfully applied to repress the expression of ß-lactamase gene (bla) using blue light illumination, resulting a dramatic reduction of ampicillin resistance in engineered E. coli. Moreover, blue light was utilized to induce the expression of the mechanosensitive channel of large conductance (MscL), triumphantly leading to the increase of streptomycin susceptibility in engineered E. coli. Finally, the increased susceptibility of ampicillin and streptomycin was simultaneously induced by blue light in the same E. coli cell, revealing the excellent potential of this strategy in controlling multidrug-resistant (MDR) bacteria. As a proof of concept, our work demonstrates that light can be used as an alternative tool to prolong the use period of common antibiotics without developing new antibiotics. And this novel strategy based on optogenetics shows a promising foreground to combat antibiotic resistance in the future.


Asunto(s)
Antibacterianos , Escherichia coli , Luz , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Antibacterianos/farmacología , Optogenética/métodos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Ampicilina/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Farmacorresistencia Bacteriana/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estreptomicina/farmacología , Luz Azul
10.
Proc Natl Acad Sci U S A ; 121(20): e2316271121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709929

RESUMEN

Random mutagenesis, including when it leads to loss of gene function, is a key mechanism enabling microorganisms' long-term adaptation to new environments. However, loss-of-function mutations are often deleterious, triggering, in turn, cellular stress and complex homeostatic stress responses, called "allostasis," to promote cell survival. Here, we characterize the differential impacts of 65 nonlethal, deleterious single-gene deletions on Escherichia coli growth in three different growth environments. Further assessments of select mutants, namely, those bearing single adenosine triphosphate (ATP) synthase subunit deletions, reveal that mutants display reorganized transcriptome profiles that reflect both the environment and the specific gene deletion. We also find that ATP synthase α-subunit deleted (ΔatpA) cells exhibit elevated metabolic rates while having slower growth compared to wild-type (wt) E. coli cells. At the single-cell level, compared to wt cells, individual ΔatpA cells display near normal proliferation profiles but enter a postreplicative state earlier and exhibit a distinct senescence phenotype. These results highlight the complex interplay between genomic diversity, adaptation, and stress response and uncover an "aging cost" to individual bacterial cells for maintaining population-level resilience to environmental and genetic stress; they also suggest potential bacteriostatic antibiotic targets and -as select human genetic diseases display highly similar phenotypes, - a bacterial origin of some human diseases.


Asunto(s)
Escherichia coli , Estrés Fisiológico , Escherichia coli/genética , Escherichia coli/metabolismo , Estrés Fisiológico/genética , Mutación , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Transcriptoma , Regulación Bacteriana de la Expresión Génica , Adaptación Fisiológica/genética , Mutación con Pérdida de Función
11.
PLoS Pathog ; 20(5): e1012187, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718038

RESUMEN

The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has significant challenges to human health and clinical treatment, with KPC-2-producing CRKP being the predominant epidemic strain. Therefore, there is an urgent need to identify new therapeutic targets and strategies. Non-coding small RNA (sRNA) is a post-transcriptional regulator of genes involved in important biological processes in bacteria and represents an emerging therapeutic strategy for antibiotic-resistant bacteria. In this study, we analyzed the transcription profile of KPC-2-producing CRKP using RNA-seq. Of the 4693 known genes detected, the expression of 307 genes was significantly different from that of carbapenem-sensitive Klebsiella pneumoniae (CSKP), including 133 up-regulated and 174 down-regulated genes. Both the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly related to metabolism. In addition, we identified the sRNA expression profile of KPC-2-producing CRKP for the first time and detected 115 sRNAs, including 112 newly discovered sRNAs. Compared to CSKP, 43 sRNAs were differentially expressed in KPC-2-producing CRKP, including 39 up-regulated and 4 down-regulated sRNAs. We chose sRNA51, the most significantly differentially expressed sRNA in KPC-2-producing CRKP, as our research subject. By constructing sRNA51-overexpressing KPC-2-producing CRKP strains, we found that sRNA51 overexpression down-regulated the expression of acrA and alleviated resistance to meropenem and ertapenem in KPC-2-producing CRKP, while overexpression of acrA in sRNA51-overexpressing strains restored the reduction of resistance. Therefore, we speculated that sRNA51 could affect the resistance of KPC-2-producing CRKP by inhibiting acrA expression and affecting the formation of efflux pumps. This provides a new approach for developing antibiotic adjuvants to restore the sensitivity of CRKP.


Asunto(s)
Carbapenémicos , Klebsiella pneumoniae , beta-Lactamasas , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Carbapenémicos/farmacología , Humanos , Regulación Bacteriana de la Expresión Génica , Antibacterianos/farmacología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Pequeño no Traducido/genética , ARN Bacteriano/genética , Pruebas de Sensibilidad Microbiana
12.
World J Microbiol Biotechnol ; 40(6): 195, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722426

RESUMEN

Bacillus subtilis is regarded as a promising microbial expression system in bioengineering due to its high stress resistance, nontoxic, low codon preference and grow fast. The strain has a relatively efficient expression system, as it has at least three protein secretion pathways and abundant molecular chaperones, which guarantee its expression ability and compatibility. Currently, many proteins are expressed in Bacillus subtilis, and their application prospects are broad. Although Bacillus subtilis has great advantages compared with other prokaryotes related to protein expression and secretion, it still faces deficiencies, such as low wild-type expression, low product activity, and easy gene loss, which limit its large-scale application. Over the years, many researchers have achieved abundant results in the modification of Bacillus subtilis expression systems, especially the optimization of promoters, expression vectors, signal peptides, transport pathways and molecular chaperones. An optimal vector with a suitable promoter strength and other regulatory elements could increase protein synthesis and secretion, increasing industrial profits. This review highlights the research status of optimization strategies related to the expression system of Bacillus subtilis. Moreover, research progress on its application as a food-grade expression system is also presented, along with some future modification and application directions.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Regiones Promotoras Genéticas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Señales de Clasificación de Proteína/genética
13.
Cell Host Microbe ; 32(5): 634-636, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723602

RESUMEN

Bacterial genomes are littered with exogenous: competing DNA elements. Here, Sprenger et al. demonstrate that the Vibrio cholerae prophage VP882 modulates host functions via production of regulatory sRNAs to promote phage development. Alternatively, host sRNAs inhibit the VP882 lytic phase by specifically regulating phage genes.


Asunto(s)
Profagos , Vibrio cholerae , Vibrio cholerae/genética , Profagos/genética , Profagos/fisiología , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Genoma Bacteriano , Bacteriófagos/genética , Bacteriófagos/fisiología , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo
15.
Nat Commun ; 15(1): 3825, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714645

RESUMEN

c-di-AMP is an essential and widespread nucleotide second messenger in bacterial signaling. For most c-di-AMP synthesizing organisms, c-di-AMP homeostasis and the molecular mechanisms pertaining to its signal transduction are of great concern. Here we show that c-di-AMP binds the N-acetylglucosamine (GlcNAc)-sensing regulator DasR, indicating a direct link between c-di-AMP and GlcNAc signaling. Beyond its foundational role in cell-surface structure, GlcNAc is attractive as a major nutrient and messenger molecule regulating multiple cellular processes from bacteria to humans. We show that increased c-di-AMP levels allosterically activate DasR as a master repressor of GlcNAc utilization, causing the shutdown of the DasR-mediated GlcNAc signaling cascade and leading to a consistent enhancement in the developmental transition and antibiotic production in Saccharopolyspora erythraea. The expression of disA, encoding diadenylate cyclase, is directly repressed by the regulator DasR in response to GlcNAc signaling, thus forming a self-sustaining transcriptional feedback loop for c-di-AMP synthesis. These findings shed light on the allosteric regulation by c-di-AMP, which appears to play a prominent role in global signal integration and c-di-AMP homeostasis in bacteria and is likely widespread in streptomycetes that produce c-di-AMP.


Asunto(s)
Acetilglucosamina , Proteínas Bacterianas , Fosfatos de Dinucleósidos , Regulación Bacteriana de la Expresión Génica , Saccharopolyspora , Transducción de Señal , Acetilglucosamina/metabolismo , Regulación Alostérica , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fosfatos de Dinucleósidos/metabolismo , Saccharopolyspora/metabolismo , Saccharopolyspora/genética
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 757-764, 2024 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-38708510

RESUMEN

OBJECTIVE: To explore the effect of intestinal nitrates on the growth of Klebsiella pneumoniae and its regulatory mechanisms. METHODS: K. pneumoniae strains with nitrate reductase narG and narZ single or double gene knockout or with NarXL gene knockout were constructed and observed for both aerobic and anaerobic growth in the presence of KNO3 using an automated bacterial growth analyzer and a spectrophotometer, respectively. The mRNA expressions of narG and narZ in K. pneumoniae in anaerobic cultures in the presence of KNO3 and the effect of the binary regulatory system NarXL on their expresisons were detected using qRT-PCR. Electrophoretic mobility shift assays (EMSA) and MST analysis were performed to explore the specific regulatory mechanisms of NarXL in sensing and utilizing nitrates. Competitive experiments were conducted to examine anaerobic growth advantages of narG and narZ gene knockout strains of K. pneumoniae in the presence of KNO3. RESULTS: The presence of KNO3 in anaerobic conditions, but not in aerobic conditions, promoted bacterial growth more effectively in the wild-type K. pneumoniae strain than in the narXL gene knockout strain. In anaerobic conditions, the narXL gene knockout strain showed significantly lowered mRNA expressions of narG and narZ (P < 0.0001). EMSA and MST experiments demonstrated that the NarXL regulator could directly bind to narG and narZ promoter regions. The wild-type K. pneumoniae strain in anaerobic cultures showed significantly increased expressions of narG and narZ mRNAs in the presence of KNO3 (P < 0.01), and narG gene knockout resulted in significantly attenuated anaerobic growth and competitive growth abilities of K. pneumoniae in the presence of KNO3 (P < 0.01). CONCLUSION: The binary regulatory system NarXL of K. pneumoniae can sense changes in intestinal nitrate concentration and directly regulate the expression of nitrate reductase genes narG and narZ to promote bacterial growth.


Asunto(s)
Klebsiella pneumoniae , Nitrato-Reductasa , Nitratos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Nitratos/metabolismo , Nitratos/farmacología , Nitrato-Reductasa/metabolismo , Nitrato-Reductasa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Intestinos/microbiología , Regulación Bacteriana de la Expresión Génica , Anaerobiosis , Técnicas de Inactivación de Genes
17.
Microb Ecol ; 87(1): 63, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691135

RESUMEN

Bacterial azoreductases are enzymes that catalyze the reduction of ingested or industrial azo dyes. Although azoreductase genes have been well identified and characterized, the regulation of their expression has not been systematically investigated. To determine how different factors affect the expression of azoR, we extracted and analyzed transcriptional data from the Gene Expression Omnibus (GEO) resource, then confirmed computational predictions by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results showed that azoR expression was lower with higher glucose concentration, agitation speed, and incubation temperature, but higher at higher culture densities. Co-expression and clustering analysis indicated ten genes with similar expression patterns to azoR: melA, tpx, yhbW, yciK, fdnG, fpr, nfsA, nfsB, rutF, and chrR (yieF). In parallel, constructing a random transposon library in E. coli K-12 and screening 4320 of its colonies for altered methyl red (MR)-decolorizing activity identified another set of seven genes potentially involved in azoR regulation. Among these genes, arsC, relA, plsY, and trmM were confirmed as potential azoR regulators based on the phenotypic decolorization activity of their transposon mutants, and the expression of arsC and relA was confirmed, by qRT-PCR, to significantly increase in E. coli K-12 in response to different MR concentrations. Finally, the significant decrease in azoR transcription upon transposon insertion in arsC and relA (as compared to its expression in wild-type E. coli) suggests their probable involvement in azoR regulation. In conclusion, combining in silico analysis and random transposon mutagenesis suggested a set of potential regulators of azoR in E. coli.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Nitrorreductasas , Elementos Transponibles de ADN/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Mutagénesis , Genoma Bacteriano , Biología Computacional , Mutagénesis Insercional
18.
PLoS One ; 19(5): e0301252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696454

RESUMEN

Bacteria are exposed to reactive oxygen and nitrogen species that provoke oxidative and nitrosative stress which can lead to macromolecule damage. Coping with stress conditions involves the adjustment of cellular responses, which helps to address metabolic challenges. In this study, we performed a global transcriptomic analysis of the response of Pseudomonas extremaustralis to nitrosative stress, induced by S-nitrosoglutathione (GSNO), a nitric oxide donor, under microaerobic conditions. The analysis revealed the upregulation of genes associated with inositol catabolism; a compound widely distributed in nature whose metabolism in bacteria has aroused interest. The RNAseq data also showed heightened expression of genes involved in essential cellular processes like transcription, translation, amino acid transport and biosynthesis, as well as in stress resistance including iron-dependent superoxide dismutase, alkyl hydroperoxide reductase, thioredoxin, and glutathione S-transferase in response to GSNO. Furthermore, GSNO exposure differentially affected the expression of genes encoding nitrosylation target proteins, encompassing metalloproteins and proteins with free cysteine and /or tyrosine residues. Notably, genes associated with iron metabolism, such as pyoverdine synthesis and iron transporter genes, showed activation in the presence of GSNO, likely as response to enhanced protein turnover. Physiological assays demonstrated that P. extremaustralis can utilize inositol proficiently under both aerobic and microaerobic conditions, achieving growth comparable to glucose-supplemented cultures. Moreover, supplementing the culture medium with inositol enhances the stress tolerance of P. extremaustralis against combined oxidative-nitrosative stress. Concordant with the heightened expression of pyoverdine genes under nitrosative stress, elevated pyoverdine production was observed when myo-inositol was added to the culture medium. These findings highlight the influence of nitrosative stress on proteins susceptible to nitrosylation and iron metabolism. Furthermore, the activation of myo-inositol catabolism emerges as a protective mechanism against nitrosative stress, shedding light on this pathway in bacterial systems, and holding significance in the adaptation to unfavorable conditions.


Asunto(s)
Inositol , Estrés Nitrosativo , Pseudomonas , Inositol/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , S-Nitrosoglutatión/metabolismo , S-Nitrosoglutatión/farmacología , Aerobiosis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Perfilación de la Expresión Génica , Estrés Oxidativo
19.
Prep Biochem Biotechnol ; 54(5): 709-719, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692288

RESUMEN

Identification of a single genetic target for microbial strain improvement is difficult due to the complexity of the genetic regulatory network. Hence, a more practical approach is to identify bottlenecks in the regulatory networks that control critical metabolic pathways. The present work focuses on enhancing cellular physiology by increasing the metabolic flux through the central carbon metabolic pathway. Global regulator cra (catabolite repressor activator), a DNA-binding transcriptional dual regulator was selected for the study as it controls the expression of a large number of operons that modulate central carbon metabolism. To upregulate the activity of central carbon metabolism, the cra gene was co-expressed using a plasmid-based system. Co-expression of cra led to a 17% increase in the production of model recombinant protein L-Asparaginase-II. A pulse addition of 0.36% of glycerol every two hours post-induction, further increased the production of L-Asparaginase-II by 35% as compared to the control strain expressing only recombinant protein. This work exemplifies that upregulating the activity of central carbon metabolism by tuning the expression of regulatory genes like cra can relieve the host from cellular stress and thereby promote the growth as well as expression of recombinant hosts.


Asunto(s)
Asparaginasa , Escherichia coli , Proteínas Recombinantes , Asparaginasa/genética , Asparaginasa/metabolismo , Asparaginasa/biosíntesis , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Glicerol/metabolismo , Regulación Bacteriana de la Expresión Génica
20.
Nat Commun ; 15(1): 3712, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697963

RESUMEN

The discovery of nitrogen fixation in unicellular cyanobacteria provided the first clues for the existence of a circadian clock in prokaryotes. However, recalcitrance to genetic manipulation barred their use as model systems for deciphering the clock function. Here, we explore the circadian clock in the now genetically amenable Cyanothece 51142, a unicellular, nitrogen-fixing cyanobacterium. Unlike non-diazotrophic clock models, Cyanothece 51142 exhibits conspicuous self-sustained rhythms in various discernable phenotypes, offering a platform to directly study the effects of the clock on the physiology of an organism. Deletion of kaiA, an essential clock component in the cyanobacterial system, impacted the regulation of oxygen cycling and hindered nitrogenase activity. Our findings imply a role for the KaiA component of the clock in regulating the intracellular oxygen dynamics in unicellular diazotrophic cyanobacteria and suggest that its addition to the KaiBC clock was likely an adaptive strategy that ensured optimal nitrogen fixation as microbes evolved from an anaerobic to an aerobic atmosphere under nitrogen constraints.


Asunto(s)
Proteínas Bacterianas , Relojes Circadianos , Cyanothece , Fijación del Nitrógeno , Oxígeno , Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Cyanothece/metabolismo , Cyanothece/genética , Nitrogenasa/metabolismo , Nitrogenasa/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Regulación Bacteriana de la Expresión Génica , Cianobacterias/metabolismo , Cianobacterias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA